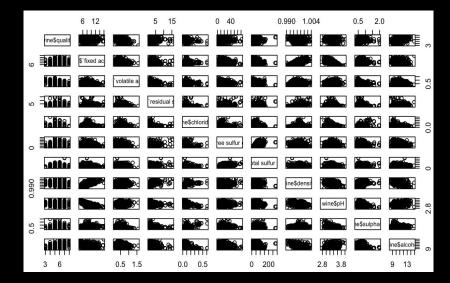
EFFECTS **ON WINE** QUALITY

By: Laila Khalilieh, Teshinee Kukamjad, Humairah Djafar, Daniella Kalaie, Gavin Cardeno

INTRODUCTION


We are interested in determining what factors affect the quality of the red wine variant of the Portuguese "Vinho Verde" based on several different tests.

Approach:

- After modeling the full model, we will transform the data based on concerns regarding the model assumptions validity using variable transformations.
- Next, we will use model subsetting to reduce the instance of overfitting our model considering the large amount of
 predictions that are in the full model.
- Lastly, we will draw conclusions regarding the relationship between our chosen independent variables and our dependent variable, wine quality.

DATA DESCRIPTION

To assess the linear relationship between wine quality and its predictors, we begin by examining multivariable scatter plots of the variables.

From the scatter plot analysis, it seems that there exists a positive correlation between alcohol content and wine quality. Conversely, we observe negative correlations between quality and variables such as volatile acidity, pH, residual sugar, and total sulfur dioxide.

Summary Statistics:

Employed all ten predictors to construct the full model.

Output:

Call

lm(formula = wine\$quality ~ wine\$ fixed acidity' + wine\$ volatile acidity' + wine\$ residual sugar' + wine\$chlorides + wine\$ free sulfur dioxide' + wine\$ total sulfur dioxide' + wine\$density + wine\$pH + wine\$sulphates + wine\$alcohol)

Residuals:

Min 1Q Median 3Q Max -2.6896 -0.3698 -0.0464 0.4563 2.0247

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	2.224e+01	2.120e+01	1.049	0.2943	
wine\$`fixed acidity`	1.426e-02	2.447e-02	0.583	0.5601	
wine\$`volatile acidity`	-1.003e+00	1.023e-01	-9.807	< 2e-16	
wine\$`residual sugar`	1.534e-02	1.498e-02	1.024	0.3062	
wine\$chlorides	-2.011e+00	4.045e-01	-4.972	7. <i>33e-07</i>	
wine\$`free sulfur dioxide`	4.799e-03	2.143e-03	2.240	0.0253	
wine\$`total sulfur dioxide`	-3.504e-03	7.028e-04	-4.986	6.84e-07	
wine\$density	-1.811e+01	2.164e+01	-0.837	0.4027	
wine\$pH	-4.055e-01	1.915e-01	-2.117	0.0344	
wine\$sulphates	9.126e-01	1.143e-01	7.983	2.72e-15	
wine\$alcohol	2.713e-01	2.619e-02	10.358	< 2e-16	

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.6481 on 1588 degrees of freedom Multiple R-squared: 0.3559, Adjusted R-squared: 0.3559 F-statistic: 89.3 on 10 and 1588 DF, p-value: < 2.2e-16

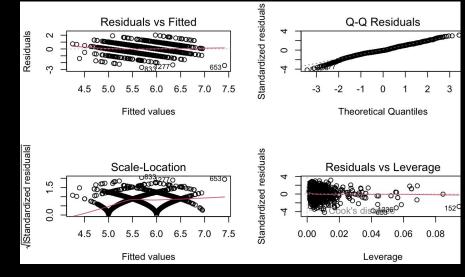
Seven variables show statistical significance:

Volatile Acidity, Chlorides, Free Sulfur Dioxide, Total Sulfur Dioxide, pH, Sulphates, and Alcohol.

DATA DESCRIPTION

RESULTS AND INTERPRETATION of Full Model

Full Model Analysis:


From the diagnostic plots, we evaluate our regression model's adherence to key assumptions: normality, linearity, independence, homoscedasticity.

Residuals vs Fitted: The plot is impacted by the discrete nature of the response variable but the regression line is plotted at the horizontal zero line so this indicates that the residuals equal zero which is a sign of constant variance.

Q-Q Plot: Points follow a 45-degree angle indicating that the normality of errors assumption has held.

Scale-Location Plot: The curved pattern suggests varying residual variance, possibly due to a discrete response variable

Residuals vs Leverage Plot: Notable clusters and high-leverage points are observed, potentially influencing the regression coefficients.

RÉSULTS AND INTERPRETATION of Full Model (cont)

Full Model Analysis:

To assess multicollinearity, we examine the variance inflation factor (VIF) for each variable::

Output:

wine\$`residual sugar	wine\$`volatile acidity`	wine\$`fixed acidity`
1.69773 <mark>0</mark>	1.276333	<mark>6.904684</mark>
wine\$`total sulfur dioxide`	wine\$`free sulfur dioxide`	wine\$chlorides
2.033274	1.911189	1.378875
wine\$sulphates	wine\$pH	wine\$density
1.428426	3.325828	<mark>6.343291</mark>
		wine\$alcohol
		2.963442

From the plot, it's evident that fixed acidity and density demonstrate high multicollinearity. Thus, we will attempt a regression subset model later in our analysis to decrease this association.

RESULTS AND INTERPRETATION for Transform Model

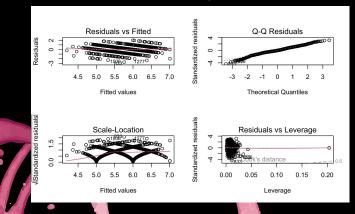
Transform Model Analysis:

Since we have many leverage points, we transform both the predictor and response variables simultaneously.

Output:

bcPa	ower	Transi	formations to	o Multinormal	ity
	Est	Power	Rounded Pwr	Wald Lwr Bnd	Wald Upr Bnc
Y1	(0.9525	1.00	0.7234	1.1816
Y2	-().2497	-0.33	-0.3906	-0.1088
Y3	(0.3533	0.33	0.2466	0.4601
Y4	í –	1.0599	-1.00	-1.1529	-0.9668
Y5	-(0.4627	-0.50	-0.5182	-0.4073
Y6	(0.0664	0.07	0.0151	0.1178
Y7	-(0.0672	-0.07	-0.1210	-0.0133
Y8	-49	9.2186	-49.22	-60.5256	-37.9116
Y9	Ĺ	1.0775	1.00	0.4924	1.6627
Y10	í –	1.1892	-1.19	-1.3511	-1.0274
Y11	- j	1.4616	-1.46	-1.8731	-1.0502

Likelihood ratio test that transformation parameters are equal to 0 (all log transformations) LR test, lambda = (00000000000) 1269.917 11 < 2.22e-16 Likelihood ratio test that no transformations are needed LR test, lambda = (11111111111) 7985.31 11 < 2.22e-16


The likelihood ratio test indicates the need for transformation, rejecting both no transformation and all log options. We apply the Box Cox multivariable transformation, incorporating the recommended power transformations into a linear model.

RESULTS AND INTERPRETATION of Transform Model

Summary:

- Multiple variables exhibit negative correlation with the response, while others show a positive relationship.
- Significant ANOVA p-value and coefficients, except for one.
- A large F-statistic suggests the model significantly outperforms the null hypothesis.
- After the transformation, the QQ plot follows 45 degrees, indicating the normality of the models errors. Moreover, in the residual vs leverage plot, we mitigated some high-leverage points.
- The scale-location plot shows slight improvements and the residual vs fitted plot once again shows that the sum of the residuals is almost perfectly zero.

Transform Model Analysis:

Summary Output:

Call:

Im(formula = wine\$quality ~ talc + tchlor + tsulp + tfixacid + tressug + tvolacid + tfsulp + ttsulp + tdense + wine\$pH) Residuals:

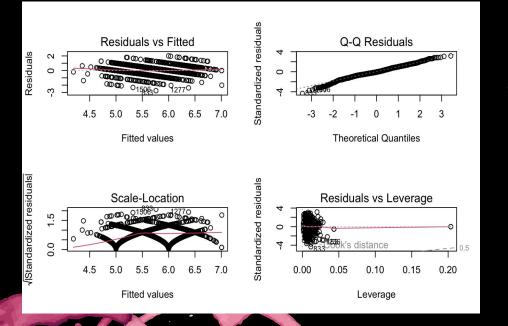
Min	1Q	Median	3Q	Max	<
-2.75966	-0.373	368 -0.036	611 0.44	277	2.00310
Coefficier	nts:				

	Estimate	Std. Error	t value	Pr(> t)	
(Intercep	t) 4.74693	9 1.26658	9 3.748	0.000185	***
talc	-49.61185	7 6.026909	9 -8.232	3.81e-16	***
tchlor	0.032577	0.008819	3.694	0.000228	***
tsulp	-0.460476	6 0.043605	-10.560	< 2e-16	***
tfixacid	-13.894802	4.944817	-2.810	0.005015	**
tressug	-0.389592	0.168991	-2.305	0.021272	
tvolacid	-2.671300	0.307313	-8.692	< 2e-16	***
tfsulp	1.055501		2.234	0.025648	
ttsulp	2.673514	0.728602	3.669	0.000251	-
tdense	1.146044	0.372790	3.074	0.002146	**
wine\$pH	-0.1008	69 0.18391	8 -0.548	0.583464	
o: :r	(0 0 0 1 (*** 0	o. 4 (±1.0.0)		
Signit. co	odes: 0 '***'	0.001 *** 0.	01 ** 0.05	<u>5.0.1</u> 11	
Residual	standard er	ror: 0.6409	on 1588 (degrees of t	freedom
Multipl <u>e</u> I	R-squared:	0.374,	Adj <u>us</u>	ted R-squa	red: 0.37

F-statistic: 94.89 on 10 and 1588 DF, p-value: < 2.2e-16

METHODS AND MOTIVATION Subsetting the Transformed Model

size <int></int>	Radj2 < <u>dbl</u> >	AIC <dbl></dbl>	AICc < <u>dbl</u> >	BIC <dbl></dbl>
1	0.2044582	-6527.092	-6527.092	-6516.337
2	0.3016665	-6734.485	-6734.485	-6718.354
3	0.3346264	-6810.796	-6810.796	-6789.288
4	0.3387789	-6819.810	-6819.810	-6792.924
5	0.3438645	-6831.159	-6831.159	-6798.896
6	0.3458817	-6835.086	-6835.086	-6797.446
7	0.3479465	-6839.146	-6839.146	-6796.129
8	0.3483312	-6839.095	-6839.095	-6790.701


According to the analysis of the best subset model method, the 7-variable model has the highest adjusted R square and the lowest AIC and AICc.

Additionally, we used forward stepwise subset analysis which also suggested the use of the 7 variable model.

Call:					
lm(formula	= wine\$quali	ty ~ talc	: + tvola	cid + tsu	ilp +
tchlor + w	ine\$pH + ttsu	lp + tfsu	lp)		
Residuals:					
Min	1Q Med	ian	3Q	Max /	
-2.74041 -0	0.36253 -0.04	016 0.44	978 1.9	5303	
Coefficien	ts:				*
	Estimate .	Std. Errc	or t valu	e Pr(> t	
(Intercept,) 6.685041	1.11483	31 5.99	96 2.49e-C)9 ***
talc	-63.539105	4.04457	6 -15.71	0 < 2e-1	6 ***
tvolacid	-2.775970	0.30441	4 -9.11	9 < 2e-1	6 ***
tsulp	-0.422602	0.04128	4 -10.23	87 < 2e-1	
tchlor	0.036766	0.00848	6 4.33	3 1.56e-C)5 ***
wine\$pH	-0.477540	0.11473	88 -4.16	52 3.32e-C)5 ***
ttsulp	2.851313	0.71326	6 3.99	98 6.69e-C)5 ***
tfsulp	1.184944	0.47015	5 2.52	20 0.011	8 *
Signif. cod	des: 0 '***'	0.001 '*	** 0.01	`*' 0.05	
1					
Residual s	tandard error	: 0.6424	on 1591	degrees c	of freed
Multiple R.	-squared: 0.	3699,	Adjus	ted R-squa	ared:
0.3672					
F-statistic	c: 133.5 on 7	and 1591	DF, p-	value: <	2.2e-16

- The summary output for our final transformed 7 variable model indicates that all of our variables have a significant p-value and the overall ANOVA p-value is also significant.
- Four of our 7 variables have a negative association with the response variable. The R² of this model is very slightly lower than the non-subsetted model (by about 0.05) which is negligible given the fact that the F-statistic is significantly higher than just the transformed full model.

RESULTS AND INTERPRETATION OF SUBSET MODEL

After subsetting the plots show no significant effect in comparison with the transformed model which indicates that our model assumptions still hold with this new subset model.

VIF values for all predictor variables are less than 5, indicating low correlation among predictor variables and no multicollinearity in our model.

talc	tvolacid	tsulp	
1.327055	1.278241	1.217210	
tchlor	wine\$pH	ttsulp	tfsulp
1.230384	1.214964	2.920351	2.789261

CONCLUSION

Summary

In our report, we started out with a full 10 variable model and then assessed the diagnostic criteria for said model. We then determined that our full model would be able to better fit the data if we transformed it as suggested by the box-cox multivariable transformation function and then analyzed this models diagnostics. Finally, to prevent overfitting our data and to eliminate multicollinearity, we proceeded to do regression subset analysis on our transformed model which led us to our final 7-variable transformed model.

Real-World Applicability

Understanding what factors impact the quality of wine most significantly will allow these industries to gain a better understanding of consumer preference and therefore allow them to continue to flourish. Additionally, there is some cause for concern about the real world applicability of our model due to the fact that certain variables like alcohol have a very large negative coefficient in our final model yet it had a near zero coefficient in the full model.

Limitations and Future Directions

The quality of wine is a discrete response variable. To improve the accuracy of our predictions, further research should be conducted using a multiclass classification model, which is better suited for predicting discrete response variables. Additionally, the nature of the transformations that were applied to our variables in our analysis makes us unable to determine a concrete association between our response variable and the predictors or interpret the model coefficients.